Metabolic profiling of hearts exposed to sevoflurane and propofol reveals distinct regulation of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators in anesthetic-induced fuel shift.
نویسندگان
چکیده
BACKGROUND Myocardial energy metabolism is a strong predictor of postoperative cardiac function. This study profiled the metabolites and metabolic changes in the myocardium exposed to sevoflurane, propofol, and Intralipid and investigated the underlying molecular mechanisms. METHODS Sevoflurane (2 vol%) and propofol (10 and 100 microM) in the formulation of 1% Diprivan (AstraZeneca Inc., Mississauga, ON, Canada) were compared for their effects on oxidative energy metabolism and contractility in the isolated working rat heart model. Intralipid served as a control. Substrate flux through the major pathways for adenosine triphosphate generation in the heart, that is, fatty acid and glucose oxidation, was measured using [H]palmitate and [C]glucose. Biochemical analyses of nucleotides, acyl-CoAs, ceramides, and 32 acylcarnitine species were used to profile individual metabolites. Lipid rafts were isolated and used for Western blotting of the plasma membrane transporters CD36 and glucose transporter 4. RESULTS Metabolic profiling of the hearts exposed to sevoflurane and propofol revealed distinct regulation of fatty acid and glucose oxidation. Sevoflurane selectively decreased fatty acid oxidation, which was closely related to a marked reduction in left ventricular work. In contrast, propofol at 100 microM but not 10 microM increased glucose oxidation without affecting cardiac work. Sevoflurane decreased fatty acid transporter CD36 in lipid rafts/caveolae, whereas high propofol increased pyruvate dehydrogenase activity without affecting glucose transporter 4, providing mechanisms for the fuel shifts in energy metabolism. Propofol increased ceramide formation, and Intralipid increased hydroxy acylcarnitine species. CONCLUSIONS Anesthetics and their solvents elicit distinct metabolic profiles in the myocardium, which may have clinical implications for the already jeopardized diseased heart.
منابع مشابه
Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance
OBJECTIVE The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. METHODS DIO C57BL/6 mice maintained on a 60% kcal fat diet ...
متن کاملInhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation
Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed tha...
متن کاملEnhanced glucose uptake via GLUT4 fuels recovery from calcium overload after ischaemia-reperfusion injury in sevoflurane- but not propofol-treated hearts.
BACKGROUND So far, no study has explored the effects of sevoflurane, propofol, and Intralipid on metabolic flux rates of fatty acid oxidation (FOX) and glucose oxidation (GOX) in hearts exposed to ischaemia-reperfusion. METHODS Isolated paced working rat hearts were exposed to 20 min of ischaemia and 30 min of reperfusion. Peri-ischaemic sevoflurane (2 vol%) and propofol (100 µM) in the formu...
متن کاملMangiferin Stimulates Carbohydrate Oxidation and Protects Against Metabolic Disorders Induced by High-Fat Diets
Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human ...
متن کاملThe Effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) Inhibition on Metabolic Flexibility during Endurance Training in Skeletal Muscles of Streptozotocin-induced Diabetic Rats
Background:Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. Pyruvate Dehydrogenase Kinase 4 (PDK4) is one of the main enzymes that play a critical role in metabolic flexibility. In current study, we examined PDK4 inhibition along with exercise training (ET) on the gene expression of Es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 113 3 شماره
صفحات -
تاریخ انتشار 2010